Formula 1 Turbo Engine Guide: Renault Energy dCi 130



The roar of the engines at the Daytona 24 hour endurance race traditionally signals that long winter is over, and sets the stage for something truly special: the 2014 season of Formula 1, and the coming of the sport’s second turbo era.

This season of Formula 1 is set to be more special than most, due in large part to the return of turbochargers to the world’s highest form of motorsports, as well as the embiggened role of hybrid electric power and a newfound strategic focus on overall efficiency that’s meant to advance the state of the art of both electric and internal combustion street cars. Quite a mouthful, that- but we’ll start chewing on the 2014 season’s big changes at its meatiest bit: the new Formula 1 turbo engines. And we’re going to start with Renault, the most successful engine-builder of the current decade.

Renault calls its latest turbo hybrid powerlant the Energy dCi 130, revealing the company’s focus on maximum efficiency and power production, and describes the new powerplant thusly:

With no fewer than 30 patents registered, the Energy dCi 130 features a raft of solutions that have enabled significant CO2 emissions (-20%) and fuel consumption savings (-30g/km)*:

Low pressure EGR (Exhaust Gas Recirculation): Renault will be the first volume manufacturer to introduce this technology on a wide scale in Europe. Low pressure EGR involves uprating the exhaust recirculation rate while at the same time containing intake pressure and the temperature of the turbocharger. The system consists in recovering the exhaust gases further downstream, once they have been through the turbine and particulate filter. Emissions of nitrogen oxides are eliminated more efficiently in this way than is the case with a high pressure EGR, and engine efficiency is improved. The combustion is of a higher quality and CO2 emissions are reduced.

Stop&Start technology involves automatically cutting the engine when the vehicle comes to a standstill, and re-starting it when the vehicle needs to pull away again. This technology is to be gradually introduced on forthcoming engines.

Variable swirl technology actively controls how the mix swirls inside the combustion chamber as a function of the demand being made of the engine.

A variable displacement oil pump allows oil flow to be adjusted as a function of the engine’s precise needs in order to minimise the amount of energy required to drive the pump.

Thermal management increases the speed at which the engine reaches its working temperature in order to minimise friction (oil viscosity).

Multi-injection strategy uses latest-generation seven-hole solenoid-operated injectors which are capable of generating several, extremely short squirts (up to six per cycle), thereby permitting combustion efficiency to be finely adjusted. This technology results in lower fuel consumption, fewer polluting emissions and less noise.

ESM (Energy Smart Management): This involves recovering the energy generated under deceleration and braking to relieve the engine by isolating the alternator during moments of low efficiency. This entails changes to battery technology.

All that Formula 1 turbo “tech talk” amounts to a combined 760 hp at 15,000 rpm, with significantly cleaner emissions and- more importantly- more torque than the outgoing, naturally aspirated V8s of last season. The new cars, which are believed to develop their peak torque far more abruptly than before, are expected to be much more difficult to drive, as well. That newfound power will make the driver’s skill even more of a factor than it’s been in recent years.

You can find out more about the new Renault Energy Formula 1 turbo engine in this spec sheet, below …


Renault Formula One Turbo Engine Specs

Renault Formula 1 Turbo

Renault F1 engine specs

… and see what it looks like all bolted together in the photos, below. While you check those out, notice the simplified exhaust plumbing, which is supposed to make it impossible for teams to use the car’s exhaust to aerodynamic advantage.

What do you think? Does Renault have 2014 in the bag, again, or will the new Mercedes and Ferrari engines give Red Bull and Sebastian Vettel a few sleepless nights this season? Let us know what you think in the comments, below. Enjoy!


Sources | Photos: Renault, Jalopnik.

About the Author

I've been in the auto industry 1997, and write for a number of blogs in the IM network. You can also find me on Twitter, at my Volvo fansite, or chasing my kids around Oak Park, IL.
  • georgevoll22

    What kind of fuel is “direct fuel injection”?

    • They’re referring to the fuel system, though the engines are tuned for an “approved” version of premium commercial pump gas- similar to Shell VPower.

  • Pingback: Gas 2 | Bridging the gap between green heads and gear heads.()

  • Pingback: Gas 2 | Bridging the gap between green heads and gear heads.()

  • Pingback: Gas 2 | Bridging the gap between green heads and gear heads.()

  • Pingback: Porsche 919 Deep Dive: Secrets of Porsche's New Hybrid Revealed()

  • Pingback: Gas 2 | Bridging the gap between green heads and gear heads.()

  • Pingback: Is this the end of F1? - Page 26 -

  • Pingback: Gas 2 | Bridging the gap between green heads and gear heads.()

  • Buena información.

    No se a ustedes, pero a mi me quedan muchas dudas sobre la eficacia de estas nuevas medidas, teóricamente en favor del medio ambiente y eficiencia de los motores….

    Resulta que el F1 consume energía en una combinación de gasolina y electricidad, en decir es un tema integral de Energía consumida total (no solamente enfocado a consumo de gasolina). ¿Por qué? Es que la mala noticia no es solamente que estamos frente a motores de combustión que gastan casi 1 litro de combustible por cada Km recorrido (muuuy ineficientes), sino que el consumo de un F1 hoy no es solo el correspondiente a gasolina. Se trata de una ecuación que involucra una batería de alto desempeño, la cual presenta hoy las siguientes controversias:
    1. esa super-batería debe tener una carga inicial (hecha en fábrica o por el cliente que la compra), que en la mayoría de los casos utiliza energía (NO VERDE) para su carga inicial.
    2. La degradación de los productos internos de una batería no son fáciles de reciclar, de hecho son desechos bastantes tóxicos (NO VERDE)
    3. En la medida en que la batería se sobrecalienta, cosa muy común en un F1, la batería va perdiendo su teórica vida útil, acelerando su degradación.
    4. La tecnología asociada a baterías no la han terminado de inventar, aún hay muchos obstáculos que superar para que el tema sea realmente viable.

    Y que hay de los nuevos motores de combustión de F1? No olvidemos que hasta ahora esos voraces tomadores de gasolina, no cuentan con ningún tipo de catalizador para conversión de monóxido en dióxido de carbono; y aunque recientemente algunos han incorporado una válvula de recirculación de gases de escape (EGR) para el manejo de los gases oxidativos del nitrógeno, la realidad es que esos motores siempre están trabajando en altas revoluciones, generando temperaturas muy altas y con mezclas por lo general bastante ricas (relaciones menores a 14.7:1), con lo cual no se puede inferir que el motor es mas amigable con el medio ambiente.
    Al contrario, precisamente porque trabajan a muy altas temperaturas, están obligados a inducir 5 y hasta 6 ráfagas de inyección de gasolina por cada ciclo del motor.

    Así que la pregunta está en el aire: ¿cual es el verdadero objetivo de los organizadores de la formula 1 para introducir esos cambios? En mi opinión las razones están lejos de los temas ecológicos…. de pronto algún día descubriremos por qué?